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Monte-Carlo Evaluation of Trading Systems
This document is copyright 2006 Timothy Masters.  Reproduction in any form is
forbidden unless written permission is obtained from the author.  The algorithms and
computer code presented in this document are provided without warranty of any sort. 
Errors and omissions are possible, and the author does not accept liability for
consequences related to errors or omissions.  Anyone using the contents of this
document does so at his or her own risk.  Before employing any of this information in a
situation in which risk of loss is involved, the user should confirm to his or her own
satisfaction that such use is appropriate.

There are few things that a trader enjoys more than designing an automated
trading system, backtesting it, and watching it perform well on the backtest.
The dreams of riches to come are delightful.  Unfortunately, it is always
possible that luck played more of a role in the system’s performance than
inherent quality.  Even a truly worthless system, one that makes its position
decisions based on rules that are little more than rolls of celestial dice, can
experience fortuitous pairing of positions with market moves.  This is
especially true if the trader has experimented with several competing
systems and chosen the best.  It is vital that the trader estimate the
probability that a worthless system could perform as well as the candidate
performed.  Unless one finds that this probability is very small, one should
be suspicious of the system.

One method of testing the performance is to assume that the
hypothetical population from which the historical returns were drawn has
a true mean of zero, and then compute the probability that results as good
as those observed could have arisen by luck.  If one is willing to assume that
the returns are independent draws from a normal distribution, the ordinary
single-sample t-test is appropriate.  If, as is more reasonable, normality
cannot be safely assumed, a bootstrap test will do a fairly decent job at
estimating this probability.

There is a second, often superior approach to handling the concept
of worthlessness in a trading system.  Rather than defining worthlessness
as the returns being drawn from a population having a mean return of zero,
we define worthlessness as the system’s position decisions being randomly
placed, unrelated to subsequent market moves.  This leads to an entirely
different test, a useful alternative to the bootstrap.

The fundamental weakness of the bootstrap is its reliance on the
assumption that the empirical distribution of the obtained sample is
representative of the population distribution.  This is what allows us to
assert that the bootstrap distribution of the test statistic mirrors its
population distribution.  As is well known, this assumption is sometimes
intrinsically flawed.  Even when it is a reasonable assumption on average,
sometimes the experimenter will be unlucky and obtain a sample whose



-2-

dispersion seriously misrepresents that of the population.  For this reason,
bootstrap tests always lie under a cloud of suspicion.

Many automated market-trading systems are amenable to analysis
by Monte-Carlo permutation simulation, an excellent though limited
alternative to the bootstrap.  The beauty of a Monte-Carlo permutation test
is that it can reveal the permutation-null-hypothesis distribution of nearly
any reasonable test statistic, and it can do so to whatever accuracy is
desired, limited only by available computational resources.  The test’s
dependence on the distribution of the obtained sample is greatly reduced
compared to the bootstrap.

The weakness of Monte-Carlo permutation is that the trading model
must fulfill strict requirements in its design.  This document discusses a
common, easily performed Monte-Carlo simulation that has fairly broad
applicability.

The Permutation Principle

We begin with a brief mathematical introduction to the theory underlying
the technique.  Suppose we have a scalar-valued function of a vector.  We’ll
call this g(v).  In a market-trading scenario, v would be the vector of market
changes and g(.) would be a performance measure for our trading system.

For example, suppose that every day, at the close of the market, we
compute some indicator variables, submit them to a model, and decide
whether we want to be long, short, or neutral the next day.  The following
morning we set our position accordingly, and we close the position the
morning after we opened.  Thus, the position is in effect for exactly one day.
If we are neutral, our equity does not change.  If we are long, our equity
changes by the amount that the market changed.  If we are short, our equity
changes by the negative of the market’s change.  Then v is the vector of
next-day market changes that we encountered, and g(v) is a measure of our
performance over the entire test period.  This may be our total return,
percent return, Sharpe Ratio, or any other reasonable performance figure.

Let M(.) be a permutation.  In other words, M(v) is the vector v
rearranged to a different order.  Suppose v has n elements.  Then there are
n! possible permutations.  We can index these as Mi where i ranges from 1
through n!.  For the moment, assume that the function value of every
permutation is different: g(Mi(v)) … g(Mj(v)) when i…j. We’ll discuss ties
later.

Let K be a random integer uniformly distributed over the range 1
through n!, and let k be an instance of this random variable.  Define M as Mk.
Later we will refer to this as the original permutation because it is the
permutation of v that is observed in an experiment.  Now draw from this
population m more times and similarly define M1 through Mm. Again for
the moment assume that we force these m+1 draws to be unique, perhaps
by doing the draws without replacement.  We’ll handle ties later.
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Compute g(M(v)) and g(Mi(v)) for i from 1 through m. Define the
statistic 1 as the fraction of these m+1 values that are less than or equal to
g(M(v)).  Then the distribution of 1 does not depend on the labeling of the
permutations, or on g(.), or on v. In fact, 1 follows a uniform distribution
over the values 1/(m+1), 2/(m+1), ..., 1.  This is easy to see.  Sort these m+1
values in increasing order.  Because each of the draws that index the
permutations has equal probability, and because we are (temporarily)
assuming that there will be no ties, the order is unique.  Therefore, g(M(v))
may occupy any of the m+1 ordered positions with equal probability.

Let F(1) be the cumulative distribution function of 1. As m
increases, F(1) converges to a continuous uniform distribution on (0,1).  In
other words, the probability that 1 will be less than or equal to, say, 0.05
will equal 0.05, and the probability that 1will exceed, say, 0.99 will be 0.01,
and so forth.

We can use this fact to define a statistical test of the null hypothesis
that M, our original permutation, is indeed a random draw from among the
n! possible permutations, as opposed to being a special permutation that
was chosen by virtue of its having an unusually large or small value of
g(M(v)).  To perform a left-tail test, set a threshold equal to the desired p-
value, and reject the null hypothesis if the observed 1 is below the
threshold.  To perform a right-tail test, set a threshold equal to one minus
the desired p-value, and reject the null hypothesis if the observed 1 is
above the threshold.  

We have conveniently assumed that every permutation gives rise to
a unique function value, and that every randomly chosen permutation is
unique.  This precludes ties.  However, the experimental situation may
prevent us from avoiding tied function values, and selecting unique
permutations is tedious.  We are best off simply taking possible ties into
account.  First, observe that when comparing g(M(v)) to its m compatriots,
tied values that are strictly above or below g(M(v)) are irrelevant.  We only
need to worry about ties at g(M(v).  A left-tail test will become conservative
in this case.  Unfortunately, a right-tail test will become anti-conservative.
The solution is simple: Shift the count boundary to the low end of the set of
ties.  Note that the code shown later actually computes conservative p-
values directly, and it slightly modifies the counting procedure accordingly.

Remember that an utterly crucial assumption for this test is that
when the null hypothesis is true, all of the n! possible permutations,
including of course the original one, have an equal chance of appearing,
both in real life and in the process of randomly selecting m of them to
perform the test.  Violations of this assumption can creep into an application
in subtle ways.  Some of these ways will be addressed in this document, but
the user is ultimately responsible for verifying the veracity of this
assumption.

We end this section by bringing the discussion back down to the
application level.  Look back to the day-trading example that began this
section.  The null hypothesis is that the order in which the daily market
returns lined up with positions chosen by the trading algorithm is random.
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The alternative is that they lined up in a way that improved performance
beyond what could be expected by random chance.  To test this null
hypothesis, we compute the net return of the system.  Then we randomly
permute the daily market returns and compute the net return for the
permutation.  Note this result.  Repeat the permute-and-evaluate procedure
several thousand times.  If only a tiny fraction of the random results exceed
the performance of the original system, we conclude that our system
provides significantly better returns than chance would provide, and we
rejoice.

The Trading Scenario

In an automated trading scenario that is amenable to Monte-Carlo
simulation, the trader is presented with a large number of trading
opportunities.  Each time an opportunity presents itself, the trader may
choose to take a long position, take a short position, or remain neutral.  Each
opportunity is associated with a raw return (market change), which may be
positive or negative.  If the trader takes a long position, the return is added
to the account.  If a short position is taken, the return is subtracted from the
account.  If the trader remains neutral, the account remains constant.  Note
that since the raw market return may be negative, a long position can result
in a loss and a short position can result in a gain.

We will remain deliberately vague about the nature of the return.
It may be measured in dollars or market points, either of which implies that
we are not compounding the returns.  If we wish to assume compounding,
each return would be the log of the ratio of market value at the end of the
trade to the market value at the beginning of the trade.  The returns may or
may not be annualized.  Your choice of how to measure each return is
irrelevant to the subject at hand.

What is a trading opportunity?  There are many possibilities.  Here
are a few thoughts regarding possible entry and exit strategies:

1. At the end of each day you perform some calculations and decide what
position you will take the next day.  If you choose to enter the market,
you open the position when the market opens the next morning.

2. Every time a defined event occurs, such as the market retreating two
percent from its ten-day high, you perform your entry calculations and
act accordingly.

3. You might choose to close the position after a predefined time period
(such as one day) elapses.
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4. You might choose to close the position after a predefined market move
(such as two points up or down) occurs.  Deliberately unbalanced
moves are potentially troublesome, as discussed on Page 15.

5. In order to avoid compromising the results, the decision to open a
position ideally should not depend on whether a position is already
open.  The implication of this fact is that you need to either be ready to
have multiple positions open, or the duration of each position must be
short enough that there is a negligible probability of opening another
position while one is still open.  This can be easily satisfied by making
sure that trading opportunities are defined so as to never overlap.
Reversal systems automatically fulfill this requirement.

The Monte-Carlo simulation presented here does not test the impact
of the definition of a trading opportunity.  Rather, it tests the quality of the
model that chooses to be long, short, or neutral when the trading
opportunity arises.  A trading opportunity is an arbitrary designation, and
any decision about opening a position is based on information that is
obtained when the trading opportunity presents itself.  The obvious
example of this situation is when calculations are done at the end of a day
to make a decision about the position to take the next morning.  In this case,
each morning is a trading opportunity, and the long/short/neutral decision
is based on information gathered from recent history.

One must be careful to preserve this characteristic when more
complex trading opportunities are designed.  For example, suppose we
were to define a trading opportunity as a morning in which yesterday’s
range was at least ten percent higher than the prior day’s range.  It may be
that this indicator alone has predictive power.  If so, Monte-Carlo
simulation would not detect this power.  So we should instead define a
trading opportunity as the morning, and let the range information be a
component of the position decision.  In other words, the definition of a
trading opportunity should be as innocent as possible, since any predictive
power in the definition will be ignored.  Also, trading opportunities should
be as frequent as possible so as to produce a large number of them.  Of
course, they must not be so frequent as to produce an impractical number
of overlapped trades.  Recall that in order for Monte-Carlo simulation to be
valid we must always be able to open a trade when the trading rule calls for
it, regardless of whether a position is already open, and overlapped
positions compromise the statistical validity of results.
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The fruit of a candidate trading rule, whose quality we wish to
evaluate, can be represented by a collection of pairs of information: a raw
market return and a long/short/neutral indicator.  For every long position,
the obtained return will be equal to the raw return.  For every short
position, the obtained return will be the raw return times minus one.  For
every neutral position, the obtained return will be zero.  The performance
of a trading system may look like this:

 Opportunity        Position          Raw     Obtained
 1 L 3.2 3.2
 2 N 2.7 0.0
 3 L –4.8 –4.8
 4 S 1.6 –1.6

...

If the rule that determines the position to take each time a trading
opportunity arises is an intelligent rule, the sum of the obtained returns will
be larger than the sum that could be expected from a rule that assigns
positions randomly.  An intelligent rule will tend to associate long positions
with positive raw returns and short positions with negative raw returns.

This effective pairing is precisely what is tested by Monte-Carlo
simulation.  If we could try every possible pairing of a position with a raw
market return, we could tabulate the total return from each arrangement
and compute the fraction of these returns that equal or exceed the return
enjoyed by our candidate model.  This would be the probability that the
candidate model could have done as well as it did by sheer luck.  This
probability is in the universe of models that have exactly as many long,
short, and neutral positions as the candidate model.  Some of the
implications of this fact will be discussed later.  For now, understand that
we are concerned with the quality of the candidate model relative to all
possible rearrangements of its pairing of trades with raw returns.

If there are n trading opportunities, there are n-factorial possible
arrangements of the pairs, although many of these would be identical due
to the fact that the positions are restricted to three values.  This is
n(n–1)(n–2)..., which is a gigantic number when n is large.  We obviously
cannot tabulate every possible ordering, but we can do something that is
almost as good.  We can try a large number of random pairings and assume
that the resulting distribution of total returns is an effective surrogate for
the true distribution.  As long as n is large (many would consider 50 to be
a minimum, and 200 or more desirable), and we test at least several
thousand random pairings, it is safe to treat the obtained distribution as a
good approximation to the real thing.
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What We Test Versus What We Want To Test

The Monte-Carlo simulation presented here tests the null hypothesis that
the pairing of long/short/neutral positions with raw returns is random.
Implicit in this test is the assumption that all pairings are equally likely
under the null hypothesis.  The alternative hypothesis is that the candidate
model is so intelligent that it is able to pair positions with raw returns in
such a way that a superior total return is produced.  This test is performed
by generating a large number of random pairings, computing the total
return of each, and finding the fraction of this collection of random pairings
whose total return equals or exceeds that of the candidate model.  This
fraction is the probability that the supposedly superior return of the
candidate model could have been obtained by nothing more than luck.  If
we find that this probability is small, we rejoice.

The null hypothesis tested by this Monte-Carlo simulation may not
be the null hypothesis we think we are testing.  For example, it does not test
the null hypothesis that the expected return of the model is zero, which is
what traditional bootstrap algorithms usually test.  Suppose the market has
a strong upward bias, which implies that the raw returns have a positive
mean.  Suppose also that the candidate model capitalizes on this by favoring
long positions over short.  In this situation, all rearranged pairings will tend
to have a positive total return.  Thus, algorithms such as the traditional
bootstrap that test the null hypothesis of zero expected return will be more
inclined to reject this hypothesis than the Monte-Carlo simulation.

This is an important issue.  Suppose the trading system is intelligent
enough to know that it should be long more often than it is short, but not
intelligent enough to come up with useful pairings.  In other words, at each
trading opportunity the model flips a biased coin, taking a long position
with higher probability than a short position.  Do we call this a good model?
The Monte-Carlo permutation test will say no, while most other traditional
methods will say yes.

We can be even more specific.  Every beginner knows that the S&P
500 has a huge historical upward bias.  Is this information something that
an intelligent trading model should use?  Do we want to count on this
upward bias continuing?  One school of thought says that the upward bias
in this market is the largest, most reliable characteristic of the market, and
a trader would be crazy to ignore it.  Another school of thought says that
the bias can vanish at any moment and remain hidden for a very long time.
Trading systems that can weather such reversals need to ignore the upward
bias.  Which school of thought is correct?  If I knew the answers to questions
like this, I’d be living in Bermuda right now.

Probably the closest we can come to answering this question is by
noting that if we ignore market bias and judge a model only on its ability to
find a superior pairing, we can always incorporate the bias later, and if we
are correct in assuming that the bias will continue, improve the model
further by doing so.  In other words, we can separate performance into a
bias component and a beat-the-odds component.  Thus, it seems reasonable
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(1)

(2)

(3)

(4)

to remove long-short prejudice from consideration as an element of quality.
This automatically happens with Monte-Carlo simulation when the
measure of quality is the total return.  But some other measures fail to
achieve this immunity.  Moreover, it can be instructive to compare Monte-
Carlo techniques with bootstrap techniques, which do not enjoy this
immunity when the market is biased.  Hence we need to devise a universal
method for immunizing quality measures against long/short prejudice.

An excellent solution is to compute the expected return of a random
trading system that has the same number of long, short and neutral
positions as the candidate system.  This is the portion of the total return of
the candidate system that is attributable to long/short imbalance interacting
with market bias.  When this is subtracted from the total return, the
remainder is the portion of the total that is attributable to beating the odds.

The expected value of a single raw return drawn from the
population is, by definition, the mean of these returns.  This is expressed in
Equation (1), in which the raw market returns are Ri for i=1, ..., n.

Let Pi signify the position of a trading system at opportunity i. This
will be long, short, or neutral.  The expected return of a trading system in
which raw returns are randomly paired with positions is shown in Equation
(2).

The total return of the candidate system is the sum of the raw
returns at those times when the candidate system is long, minus the sum of
the raw returns when the system is short.  This is expressed in Equation (3).

The total return of the candidate system is corrected for long/short
prejudice by subtracting the expectation of a similarly prejudiced random
system.  This is shown in Equation (4), which is Equation (3) minus
Equation (2).
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Notice that the corrected return of Equation (4) is identical to the
uncorrected return of Equation (3) except that the mean of the raw returns
is subtracted from each individual raw return.  In other words, to remove
the effect of long/short imbalance in a biased market, all you need to do is
center the raw returns.  This is intuitive; to remove the impact of bias you
simply remove the bias.  But it’s nice to see solid theoretical support for
doing so, rather than relying on intuition.  By removing bias this way,
which is implicitly done by the Monte-Carlo permutation test, other
statistical tests can be made to behave more like the permutation test.

Serial Dependence

Another consideration is the impact of serial dependence within the raw
returns and the positions taken by the candidate system.  If either the raw
returns or the positions are serially independent, random rearrangement of
the pairs is a reasonable way to generate a null distribution.  But what if
both the positions and the raw returns are serially dependent?  This can
easily happen.  For example, moving-average crossover systems applied to
serially dependent raw returns will produce positions that are serially
dependent themselves.  In such situations, fully random reordering of the
pairings will produce trial systems that would not normally appear in the
context of the trading rule.  So is randomizing pairs a valid way to test the
null hypothesis of worthless pairing against the alternative that the
candidate system is intelligent?  This is an arguable point, but I claim that
the answer is usually yes, tinged with only a hint of unease.

The argument hinges on the implied nature of the universe in which
the null hypothesis dwells.  Suppose that the experimenter is interested in
only models that exhibit substantial serial dependence within both the raw
returns and the positions taken.  He or she would be inclined to ask the
following question:  What is the probability that, among all such serially
dependent but otherwise random (worthless) models, a model that was as
good as the candidate would have been encountered by virtue of pure luck?
In this situation, the Monte-Carlo technique of this chapter would be
incorrect.  Instead, the experimenter would need to devise a way to
simulate random pairings that all exhibit the desired degree of serial
dependence.  This would be difficult at best, and perhaps impossible.

But I claim that this is often the wrong question.  Why limit the null
universe to serial dependence?  It may be that the serial dependence within
the positions is a critical component of the intelligence of the trading
system.  Limiting the null universe to such serial dependence would
discount its importance, leading to an overly conservative test.  If the
intelligent response to serial dependence in the raw returns is serial
dependence in the positions, so be it.  I would like the testing algorithm to
credit such intelligence instead of discounting it.  By basing the null
distribution on fully random pairing, we give credit where, I believe, credit
is usually due.  Feel free to disagree if you wish, because there are good
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arguments to the contrary.  But at least understand the situation.  Figures
1 and 2 shed more light on the issue.

Figure 1 shows the attained rejection rate versus the presumed
rejection rate for 100 trading opportunities with raw returns having no
serial correlation.  Half of the positions are long and half are short.  The
short dashed line is for the percentile bootstrap, the long dashed line is for
the basic bootstrap, and the dotted line is for the Monte-Carlo method.  This
latter method is the closest to optimality,  a solid line.  In fact, its departures
from optimality are due only to random sampling error.  Monte-Carlo
simulation would approach perfection as the number of trials is increased.
As is often the case, the bootstrap methods are slightly anti-conservative.

Figure 2 is the same scenario except that the raw returns have a lag-
one serial correlation of 0.1, which is large for a commodity.  Also, all long
positions are contiguous, as are all short positions.  This, of course, is
extreme serial correlation, far beyond what one would normally encounter
in practice.  Observe that Monte-Carlo simulation has become somewhat
anti-conservative, though not terribly so.  The two bootstrap algorithms
have suffered even more, although a dependent bootstrap would probably
help their performance.

This illustrates the heart of the matter.  The rules tested in Figure 2
are random by design in that they choose their positions without looking at
the associated raw returns.  But they are also serially correlated, as are the
raw returns.  Monte-Carlo simulation rejects the null hypothesis of
worthlessness more often than would be expected for totally random rules.
This is undoubtedly a flaw, at least in this correlated-by-design simulation.
But serial correlation can be argued to be a type of non-randomness that can
arise intelligently.  Since the raw returns themselves exhibit serial
correlation, it is reasonable to expect that profitable models would tend to
be serially correlated in their positions.  So by limiting the rules that went
into generating Figure 2 to only serially correlated rules, we are working
with a population of candidate rules that, although otherwise random, are
inclined to be the types of rules that would succeed in a market whose raw
returns are serially correlated.  Thus we would expect that an above-
average number of these rules would have superior returns.  In other
words, the Monte-Carlo simulation has detected the fact that in a serially
correlated market, rules that perform well tend to have serially correlated
positions.  It is my opinion that this modest degree of anti-conservative
behavior is more tolerable than the extreme conservatism we would suffer
by limiting the null distribution to serial correlation (if we even could!).

Actually, this whole discussion probably blows the issue far out of
proportion.  The simulation shown in Figure 2 uses data that is considerably
more correlated than would be encountered in most markets, and the
positions are the ultimate in correlated: one clump of contiguous longs, and
one clump of contiguous shorts.  No realistic trading system would take this
extreme approach.  Yet even so, at a significance level of 0.1 we get rejection
at a rate of about 0.12.  This does not demonstrate a serious problem until
we get far out into the tail.
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Figure 1  Rejection rates with no serial correlation.
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Figure 2  Rejection rates with modest serial correlation.
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Nonstationarity

Nonstationarity of the raw returns and positions might be an issue.  When
nonstationarity is obvious, one might be tempted to break the series of pairs
into several subseries, each of which we assume to be stationary, and
permute each separately.  But in my opinion, the argument against this is
the same as the argument against limiting the null distribution in the case
of serial dependence.  Nonstationarity of the positions may well be an
intelligent response of the model to nonstationarity of the raw returns.  In
this case we want to reward the model.

For example, suppose we apply an effective trend-following model
to a market that has several extended trends.  The model will favor long
positions during upward trends and short positions during downward
trends.  If we were to break up the series into subseries according to trend
and permute each separately, the null distribution would be centered
around a positive number because the return from each subseries will be
decent regardless of how it is permuted.  Every upward trending subseries
will enjoy mostly long positions, so every permutation will favor a positive
return.  The same applies to downward  trending series with mostly short
positions.  This will reduce the significance of the candidate system.  Only
full permutation will reveal the quality of the candidate system by
comparing it to random systems that fail to make the intelligent connection
between trend and effective position.

Thin Position Vectors

The final consideration can be confusing, although it is the least
troublesome in practice.  Suppose for the moment that the raw returns have
zero mean (which we should generally ensure by centering, although this
has no effect on the Monte-Carlo permutation test) and are independent
with a symmetric distribution.  This is usually fairly close to reality for most
markets, though it is almost never satisfied completely.  As shown in
Equation (2), the expected return of any random system, regardless of its
quantity of long, short, and neutral positions, will be zero because the mean
of every raw return is zero.

The standard deviation of the total return is another matter entirely.
One extreme situation is that the candidate system may have an open
position (long or short) exactly once out of n trading opportunities.  The
standard deviation of the total return among all permutations will equal
that of the raw returns.  More generally, we may have exactly k open
positions in the candidate system.  The standard deviation of the total
return among the permutations will be approximately sqrt(k) times the
standard deviation of the raw returns, with the exact factor depending on
the position vector.  In other words, the dispersion of the permuted returns
depends on the number of open positions.  Working with mean or
annualized returns will not help because such alternatives will just be
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rescaled values of the total return.  There is no getting around the fact that
the number of open positions in the candidate system affects the dispersion
of the Monte-Carlo null distribution, and hence the computed probability
associated with a candidate.

Why does this at first seem to be a problem?  Recall that our Monte-
Carlo simulation tests the null hypothesis that the order in which the
trading model placed its trades is random.  The alternative is that the order
of the trades was intelligently designed so as to produce a superior return.
We are able to compute the probability that, among random systems that
have exactly as many long, short, and neutral positions as the candidate model, a
return as good as that obtained by the candidate model could have been
obtained by sheer luck.  This is a conditional probability.

Now suppose your model has 1000 trading opportunities, and it
decides to be long 187 times, short 49 times, and neutral the rest of the time.
The Monte-Carlo randomization test  will tell you the probability that a
worthlessly random model having precisely this number of long, short, and
neutral positions could have done as well as your candidate model by luck
alone.  However, your real null universe is not systems that have these
exact position quantities.  Rather, you are dwelling in a more general
universe in which models will be long perhaps 10 to 20 percent of the time,
short another 10 to 20 percent of the time, and neutral otherwise.  If you had
consumed three cups of coffee this morning instead of two, perhaps your
candidate model would have been long 103 times, short 107 times, and
neutral the remainder of the time.  So the quantity that you really want to
compute is the probability that a worthless model from this more general
universe could have done as well as your candidate by nothing more than
luck.  Not surprisingly, this quantity is difficult or impossible to compute.
Of course you could specify probability distributions for the number of long
and short positions and perform a huge Monte-Carlo simulation in which
you generate a vast number of random models having a variety of position
counts.  This would give you a probability in the larger universe.  But is this
probability any more useful than that obtained by basic randomization?
No.

Imagine that a vast number of experimenters in a vast number of
locations are devising candidate models having 1000 trading opportunities.
Segregate their results into bins according to their number of long, short,
and neutral positions.  As we already know, within each bin the Monte-
Carlo test will work correctly.  In other words, within any particular bin,
worthless models will reject the null hypothesis at a p=0.1 level ten percent
of the time on average, at a p=0.05 level five percent of the time, et cetera.
But if the rejection rate in each bin is correct, the grand rejection rate in the
larger universe is also correct.  This is admittedly a very heuristic argument,
but it captures the essence of the situation.

The bottom line is that each randomization test is valid for its
candidate model only.  You cannot generate a Monte-Carlo null distribution
using a candidate system having long/short/neutral positions of 187/49/764
and then use this distribution to test a system with positions of 103/107/790.



-14-

These two candidate rules will have null distributions with different
dispersions.  But in practice this would never be a problem anyway.  Use
each candidate rule to generate its own null distribution and everything
will be fine.

Avoid Using a Generic Null Distribution

There is one situation in which the experimenter may be tempted to
interchange null distributions and tests.  It would be convenient to generate
just one null distribution in advance from a generic candidate model, and
then judge all subsequent models based on this distribution.  This would
seem to be reasonable for trading systems that are, by design, always in the
market, regularly switching between long and short.  In this case, all null
distributions would have same number of neutral positions: none.  Hence,
the spread of the dispersion would seem to be unaffected by varying the
position vector.

Nonetheless, this is dangerous.  If the distribution of the raw returns
is not symmetric, the distribution of total returns under permutation will
depend on the relative number of long and short positions.  As an extreme
example, suppose that there are 1000 centered raw returns, and that 999 of
them are +1 and one of them is –999.  Also suppose that the candidate
system has 999 long positions and one short position.  The Monte-Carlo null
distribution will have a long right tail due to the rare alignment of the –999
return with the single short position.  Conversely, if the candidate system
has 999 short positions and one long, the null distribution will have a long
left tail due to the single long position rarely being matched with the –999
raw return.  This is admittedly an extreme example.  Nonetheless, it is
important to be aware that the long/short ratio can have an impact on the
null distribution when the distribution of raw returns is significantly
asymmetric.  Once again, the admonition is to let a candidate model
generate its own null distribution.
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When Are We Unable To Use a Monte-Carlo Test?

It should be clear by now that the Monte-Carlo permutation test is an
excellent way to test the null hypothesis that a trading system’s matching
of positions to raw returns is random as opposed to intelligent.  Why don’t
we do it all the time, instead of relying on parametric tests that have
possibly unrealistic assumptions, or bootstrap tests that are notoriously
unstable?  The answer is that sometimes we simply can’t do it.  We may not
have the requisite information, or the trading system may have been
designed in a way that is incompatible with Monte-Carlo randomization
tests.  Most other tests require only a set of trade results.  For example, if
someone hands you a set of 100 profit/loss figures from the 100 trades that
he did last year, you could perform a bootstrap test of the null hypothesis
that the mean of the population from which these trades were taken is zero.
But in order to perform a Monte-Carlo randomization test, you would need
far more information than just these 100 numbers.  At a minimum, you
would need the raw market return and his position for each trade.  In
addition, if he is ever out of the market, you ideally should have the
complete set of raw potential profits and losses for every trading
opportunity he had, whether that opportunity was taken or not.  This is
because you need to know how much profit was foregone with every
opportunity not taken, and how much profit would have been foregone had
opportunities taken been passed by.  If the system has numerous long and
short positions, the Monte-Carlo permutation test can be performed on just
times when a position is open.  But this shortcut sacrifices considerable
power and stability.

This is not an impossible requirement, though, especially if the
trading system is designed with Monte-Carlo testing in mind.  You need to
be able to rigorously define every trading opportunity and associate a raw
return with each opportunity.  This is the most important requirement.

There are several more considerations.  In order to avoid possible
trade interactions, it is best if the trading opportunities do not overlap.
However, in practice this is not strictly necessary as long as any overlap is
not extensive.  Finally, you need to remember that the hypothesis being
tested concerns the order in which positions and raw returns are paired.
The hypothesis does not concern the actual return of the system, which is
usually the more pertinent question.  It is vital that these alternative
viewpoints be compatible in your experimental situation.  In particular, the
randomizations performed in the Monte-Carlo simulation must be a
reasonable representation of the possibilities that exist in real life.  If the set
of Monte-Carlo randomizations includes a significant number of pairings
that, due to the design of the experiment, would be unlikely in real life, the
test will not be valid.

We can elaborate on these issues with a situation that may present
itself occasionally.  Suppose someone gives us an extended trading history
defined by entry and exit dates and returns for each period in the market.
Ideally, all entries and exits occurred at the open or close of a market so that
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no day was ever split by having an open position for just part of the day.
Partial days would require approximations to full day returns.  The best
way to handle a set of dates and returns would be to break it into positions
and returns for each individual day and apply Monte-Carlo randomization
to the complete set of days, including all days in which the trader was out
of the market.  This forces the trades into the ideal structure for the test.

But it may be that such a detailed breakdown is difficult and we
want a shortcut.  We would still need the raw return of each neutral period.
If we cannot procure this information, Monte-Carlo randomization is
compromised, perhaps severely.  So what we possess for our simplified
method is a net return for each long period, a net return for each short
period, and a hypothetical net return for each neutral period.  This would
be far fewer numbers than if we broke down the long/short/neutral periods
into individual days.  Can we perform Monte-Carlo randomization on this
data?

The answer is that we can, but it is dangerous.  Suppose, for
example, that the trading system is in the market for short periods of time.
Perhaps when it takes a long position it is in the market for just one day,
and when it takes a short position it is in the market for roughly five days.
Between these trades the system is neutral for extended periods of many
days.  Suppose also that the system is completely worthless, taking its
positions randomly.  The raw return associated with each long position will
have a relatively small variance because each long return is the raw return
of a single day.  At the other extreme, the raw return associated with each
neutral position will have a relatively large variance because it is the sum
of the raw returns of many days.

Now think about what happens when we randomly permute the
pairings of positions with raw returns in order to generate the supposed
null hypothesis distribution of total returns of worthless systems.  Many of
these random permutations will pair long positions with raw returns
having unnaturally large variance, and simultaneously pair neutral
positions with raw returns having unnaturally small variance.  Such
pairings would rarely, if ever, occur in actual random realizations of the
trading system.  Therefore, the Monte-Carlo distribution would not be an
accurate representation of the real-world distribution of returns from
similar worthless systems.

Note that the problem is not that the raw returns have different
variances.  The Monte-Carlo test described in this chapter does not require
that the raw returns have equal variances, although this goal is usually
easily satisfied and is great insurance against problems like the one being
described here.  The problem in this example is that there is an inherent
relationship between variances and positions.  Even when the trading
system is worthlessly random, different positions will tend to be associated
with raw returns having different variances, with these associations having
nothing to do with intelligence of the system. They are inherent in the design
of the model.  The implication of this association is that randomization will
produce numerous unlikely pairings.  This is a direct violation of the
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Monte-Carlo assumption that in real life all possible pairings are equally
likely under the null hypothesis.

There is a crude but often effective way to get around the problem
just described if you must do so.  It does bear repeating that the best
approach is to break down extended positions into strings of individual
(probably daily) positions and returns.  But if for some reason we cannot do
this, we should not simply apply Monte-Carlo randomization to the
positions and net raw returns of the candidate system.  The impact of
unequal variances as just described could be severe.  Instead, test only the
sign of each obtained return, rather than its magnitude.  In other words,
count as a success every pairing that produces a positive return, and count
as a failure every pairing that produces a negative return, regardless of the
magnitude of the return.  The total score of any system, candidate or
randomized, is the number of successes minus the number of failures.

This is obviously not a perfect solution.  A candidate system that has
a large number of small wins and a small number of enormous losses,
resulting in a net loss, will nevertheless be endorsed by this algorithm.
Thus, systems that are inherently unbalanced need not apply.  Nevertheless,
beggars cannot be choosers.  If the system being evaluated has no a priori
imbalance, this method may perform well.  The examples shown later will
demonstrate the surprising power of testing nothing more than the ability
of a trading system to match long positions with upward market moves and
short positions with downward market moves.

Another situation in which the experimental design may
inadvertently produce position/return pairings that are not well simulated
by Monte-Carlo permutation is when the exit strategy involves unbalanced
market moves.  For example, suppose our trading system involves both
long and short positions, and we decide that an open position will be closed
if the market either rises four points or drops two points from when the
trade was opened.  Then in real life, long positions will always be associated
with either a four-point win or a two-point loss, while the opposite will be
true for short positions.  But Monte-Carlo randomization of the pairings will
associate either size win or loss with either position, and thus produce a
null distribution that does not reflect reality.  Note that the problem is not
that the wins and losses are unbalanced.  This is common and legitimate.
The problem is that the trading system by design limits pairing of positions
with returns in a way that is not reflected by random perturbation.  The key
question is this:  If the trading system is truly worthless, are all possible
pairing of returns with positions equally likely in real life?  The answer is
clearly no in this example.
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Code for Monte-Carlo Randomization

At the center of an efficient Monte-Carlo randomization test is an algorithm
that can quickly shuffle an array in such a way that every possible
permutation is equally likely.  The following algorithm fits the bill.  Let the
array be X1, X2, ..., Xn. Then:

1) Set i=n.
2) Randomly choose j from 1, ..., i with all choices being equally likely.
3) Exchange Xi with Xj.
4) Set i=i–1.
5) If i>1 go to Step 2.

The prior section discussed the possibility of scoring systems based
on only the sign of the obtained return, ignoring the magnitude of the
returns.  This test might loosely be termed nonparametric because it is fairly
free from the influence of inherent relationships between distribution
parameters and positions, although it is certainly not completely free from
these influences.  This sign-only test is potentially useful when such
damaging relationships are possible.  Unfortunately, the randomized null
distribution for this test can be problematic when you do not have a large
number of position changes.  Only three obtained returns are possible:
success (usually coded as +1), failure (usually coded as –1) and zero.  The
result is that the null distribution is plagued with many ties, a fact which
artificially inflates the area of the right tail (as well as the left tail, although
we don’t care about that one).  Computed significance levels are overly
conservative.  A tempting but dangerous fix is to add a tiny random
number to the score obtained by the candidate system and each randomized
system.  These random numbers should be small enough that they have no
impact other than breaking ties.  This technique converts a discrete null
distribution with a large number of ties to a continuous distribution with no
ties.  The resulting test does not suffer from tie-induced conservative bias,
and hence it rejects a true null hypothesis with the expected probability.
Moreover, the apparent power of the test is increased.  Nonetheless, strictly
speaking, this modification is incorrect in that it does alter the null
distribution from its theoretically correct shape.  I prefer to be correct and
conservative.  Code for Monte-Carlo randomization is as follows:

double monte (
 int n , // Number of trading opportunities
 double *raw , // Raw return of each
 int *pos , // Position of each; 1=long; -1=short; 0=neutral
 int nreps , // Number of replications, generally at least 1000
 double *nonpar , // If not NULL, only signs used for nonparametric test
 int *work // Work vector n long avoids shuffling input data
 )



-19-

{
int i, irep, k1, k2, count, nonpar_count, temp ;

 double cand_return, nonpar_cand_return, trial_return, prod ;

 memcpy ( work , pos , n * sizeof(int) ) ;  // Preserve input positions

/*
 Compute the return of the candidate model
 If requested, do the same for the nonparametric version
*/

 cand_return = 0.0 ;
 for (i=0 ; i<n ; i++)
 cand_return += pos[i] * raw[i] ;

 if (nonpar != NULL) { // Do the same using only signs if requested
 nonpar_cand_return = 0.0 ;
 for (i=0 ; i<n ; i++) {
 prod = pos[i] * raw[i] ;
 if (prod > 0.0)
 nonpar_cand_return += 1.0 ;
 else if (prod < 0.0)
 nonpar_cand_return -= 1.0 ;
 }

}

/*
 Do the Monte-Carlo replications
*/
 count = 0 ; // Counts how many at least as good as candidate
 nonpar_count = 0 ; // Ditto for ignoring signs (if requested)

 for (irep=0 ; irep<nreps ; irep++) {

 k1 = n ; // Shuffle the positions, which are in 'work'
 while (k1 > 1) { // While at least 2 left to shuffle
 k2 = (int) (unifrand () * k1) ; // Pick an int from 0 through k1-1
 if (k2 >= k1) // Should never happen as long as unifrand()<1
 k2 = k1 - 1 ; // But this is cheap insurance against disaster
 temp = work[--k1] ; // Count down k1 and swap k1, k2 entries
 work[k1] = work[k2] ;
 work[k2] = temp ;
 } // Shuffling is complete when this loop exits
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 trial_return = 0.0 ;
 for (i=0 ; i<n ; i++) // Compute return for this randomly shuffled system
 trial_return += work[i] * raw[i] ;

 if (trial_return >= cand_return) // If this random system beat candidate
 ++count ; // Count it

 if (nonpar != NULL) { // Do the same using only signs if requested
 trial_return = 0.0 ;
 for (i=0 ; i<n ; i++) { // Compute return for this randomly shuffled system
 prod = work[i] * raw[i] ;
 if (prod > 0.0)
 trial_return += 1.0 ;
 else if (prod < 0.0)
 trial_return -= 1.0 ;
 }

if (trial_return >= nonpar_cand_return) // If this random system beat candidate
 ++nonpar_count ;           // Count it
 }

}

if (nonpar != NULL)
 *nonpar = (double) nonpar_count / (double) nreps ;

 return (double) count / (double) nreps ;
}

The calling parameter list includes *nonpar, which should be input
as NULL if only the ordinary test is to be performed.  If a pointer to a real
variable is input, the so-called nonparametric test, in which magnitudes are
ignored, will also be performed, with the resulting p-value returned to this
variable.  Once again, note that this test is not strictly nonparametric,
because the distribution of the raw returns can have some impact in some
trading scenarios.  This will be discussed more in the next section.

A work vector is used to preserve the original order of the input
position vector.  If preservation is not required, this vector can be
eliminated.

The first step is to compute the return of the candidate system, as
well as the sign-only return if requested.  Then the Monte-Carlo loop
repeatedly shuffles the position vector and computes the return for each
trial.  Every time a trial return equals or exceeds the candidate’s return, a
counter is incremented.  The computed p-value, which is the area to the
right of the candidate’s return, is obtained by dividing the count by the
number of trial replications.  Observe that the shuffling algorithm stated
earlier assumes an index origin of one, but C++ uses an origin of zero.  This
necessitates some minor changes in indexing.
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Tests With Simulated Returns

I wrote a program that compares Monte-Carlo randomization with the
percentile and basic bootstrap algorithms using a variety of raw return
distributions.  Positions are serially correlated by design, with positions
(long, short, or neutral) tending to be grouped into clumps rather than
being randomly distributed.  Tests are done two ways, once using
individual raw returns, which is the preferred method for Monte-Carlo
randomization when possible, and once using the net return for each
extended trade.  In other words, for this method the sum of raw returns is
cumulated for each group of the same position, and the tests are based on
the sums only.  Real-world trading scenarios may sometimes require this
modification.  Finally, this summation method is tested using the signs-only
randomization test described earlier.

Some tables of results now follow.  Each test is performed for three
degrees of intelligence in the candidate model, and the percent rejection at
the 0.05 level is reported for each of these three powers.  For worthless
candidates we would expect that the rejection rate at the 0.05 level would
be about five percent.  Modestly powerful candidates should enjoy a higher
rejection rate, and strong candidates should reject at an even higher rate.
If worthless candidates are rejected at a rate of less than five percent, the
test is conservative, which is annoying but not a serious problem as long as
the rejection rate is close to five percent.  If the rejection rate for worthless
candidates is much higher than the expected five percent, the test is anti-
conservative, which is a serious problem in that the test will erroneously
reject the null hypothesis too often.  For intelligent models, higher rejection
rates are good because we want to reject the null hypothesis when the
candidate has intelligence.

Each table contains seven rows and three columns.  The left column
is the rejection rate for worthless models, the center column is the rate for
modestly intelligent models, and the right column is that for powerful
models.  The first row is the set of tests using Monte-Carlo randomization
of the individual returns.  The next two rows are the percentile and basic
bootstrap tests of the same data.  The next three rows are the Monte-Carlo,
percentile, and basic tests using the grouped returns.  The last row is the
Monte-Carlo sign-only test of the grouped returns.

Table 1 presents the results for serially independent raw returns that
have a normal distribution.  There were 500 individual returns, of which
approximately 156 were long, 78 were short, and 266 were neutral.
(Actually, the number of long, short, and neutral positions is random.  The
cited numbers are the means.)  The length of each open position follows a
geometric distribution with a mean length of eight.

This table shows that when the individual obtained returns are used,
Monte-Carlo randomization performs excellently.  Its 0.05 rejection rate is
exactly what would be expected, and its reject rate increases rapidly as the
true power of the trading system increases.  Both bootstrap algorithms also
perform well, though with a slightly conservative bias.
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 Test       Worthless      Modest      Powerful

MC Indiv.        5.00         19.43         47.40
PCtile Indiv.    4.69         18.84         46.55
Basic Indiv.     4.72         18.85         46.57

MC grouped       5.71         21.14         48.83
PCtile grouped   6.09         22.86         53.35
Basic grouped    5.54         22.19         53.30

Sign-only        3.36         22.93         63.21
Table 1  Raw returns with independent normal distribution.

 Test       Worthless      Modest       Powerful

MC Indiv.        5.03         12.26         25.27
PCtile Indiv.    1.49         20.14         47.98
Basic Indiv.     0.31          9.40         28.47

MC grouped       4.37         12.32         26.19
PCtile grouped   2.35         18.28         45.87
Basic grouped    0.61          9.07         29.81

Sign-only        3.53         13.73         36.59
Table 2  Raw returns with right-skewed distribution.

When the trades are grouped, which violates the identical
distribution requirement of both randomization and the bootstrap, all three
tests become moderately anti-conservative, with the basic bootstrap
performing best by a small margin.

What is very interesting is that the sign-only modification of the
grouped data performs fabulously.  Its reject rate under the null hypothesis
is substantially less than what would be expected, which ordinarily would
be a warning flag that the test lacks power.  But its reject rate when the null
hypothesis is false is actually better than the three full-information
alternatives!  This is probably because of the way effective models are
defined in the test program.  Effective models have a higher than random
probability of correctly matching positions with raw returns, which is
precisely what the sign-only test measures.

Table 2 demonstrates results when the raw returns have a strong
positive skew.  The bootstrap tests become conservative, with Monte-Carlo
randomization being unaffected.  Interestingly, the percentile bootstrap,
despite having a far lower reject rate when the null hypothesis is true, has
the highest reject rate when the null hypothesis is false.  This is fantastic!



-23-

 Test       Worthless      Modest       Powerful

MC Indiv.        5.09         13.12         27.01
PCtile Indiv.   21.01         34.70         53.21
Basic Indiv.    13.81         23.91         38.54

MC grouped       5.52         14.15         28.58
PCtile grouped  14.36         31.80         52.99
Basic grouped    7.73         22.06         40.45

Sign-only        2.62         13.21         37.78
Table 3  Raw returns with left-skewed distribution.

 Test       Worthless      Modest       Powerful

MC Indiv.        5.02         16.30         38.18
PCtile Indiv.    5.48         17.35         40.58
Basic Indiv.     4.31         15.01         37.37

MC grouped       5.66         18.09         40.05
PCtile grouped   6.70         20.94         46.28
Basic grouped    5.15         18.12         43.61

Sign-only        3.50         22.30         61.69
Table 4  Raw returns with heavy-tailed symmetric distribution.

Unfortunately, as Table 3 shows, the situation reverses dramatically
when the raw returns have a left skew.  Both bootstrap methods become so
anti-conservative that the tests are worthless.  Again, Monte-Carlo
randomization is not affected.

Tables 4 and 5 show the results when the raw returns have two
different forms of unusual symmetric distributions.  The former has a
heavy-tailed unimodal distribution, and the latter has a relatively light-
tailed bimodal distribution, which would be encountered in practice when
the trading system is designed to have preordained wins and losses.  There
is nothing unusual to note here.  All of the tests behave roughly as expected
and enjoy decent and similar power.  When individual returns are used,
Monte-Carlo randomization exhibits a reject rate that is closest to what
theory would predict.  And once again, the sign-only test for grouped data
performs extremely well.
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 Test       Worthless      Modest       Powerful

MC Indiv.        5.02         20.03         49.02
PCtile Indiv.    4.76         19.22         47.91
Basic Indiv.     4.83         19.43         48.29

MC grouped       5.70         21.91         50.22
PCtile grouped   6.17         23.46         54.63
Basic grouped    5.68         22.89         54.74

Sign-only        3.43         23.03         62.76
Table 5  Raw returns with bimodal symmetric distribution.

 Test       Worthless     Modest        Powerful

MC Indiv.        6.57         23.35         52.67
PCtile Indiv.    6.21         22.58         51.87
Basic Indiv.     6.25         22.55         51.91

MC grouped       5.61         21.23         48.14
PCtile grouped   6.04         22.81         52.93
Basic grouped    5.36         21.92         52.69

Sign-only        3.31         23.02         62.80
Table 6  Raw returns with correlated normal distribution.

Table 6 illustrates results when the raw returns have a serial
correlation of 0.1, which is far larger than that exhibited by any commodity
market I’ve seen.  The tests become anti-conservative, which as has already
been discussed may be viewed as a manifestation of the fact that serially
correlated positions are the best response to a serially correlated market.

Finally, Table 7 demonstrates what happens when there are only 40
individual trades in an independent normally distributed market.  As often
happens, the bootstrap tests become moderately anti-conservative.  Monte-
Carlo randomization of individual trades manages to stay right on target
with its null rejection rate.
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 Test       Worthless     Modest        Powerful

MC Indiv.        5.00         15.04         33.62
PCtile Indiv.    6.49         18.82         40.35
Basic Indiv.     6.49         19.25         41.60

MC grouped       3.19         10.78         25.86
PCtile grouped   6.49         18.84         40.42
Basic grouped    6.49         19.23         41.59

Sign-only        2.68         12.06         34.74
Table 7  Raw returns with independent normal distribution, n=40.

If there is one thing to be learned from the preceding tables, it is that
the Monte-Carlo permutation test of individual returns is stable and reliable
compared to bootstrap tests.  Table 3 certainly makes this clear!  Naturally,
the user may not always have a choice.  The fact that Monte-Carlo
randomization requires more information than the bootstrap may leave the
user with only the bootstrap option.  But the moral of the story is that,
whenever possible, a trading strategy should be designed with this in mind.
By enabling use of all individual returns, obtained and hypothetical, the
user can employ Monte-Carlo randomization tests, which have many
advantages over the bootstrap.

Testing the Best of Many Models

Very often the experimenter will build many models, which may be
variations on one theme, or which may represent a variety of ideas.  The
best model from among a collection of candidates might have obtained that
exalted position because of its quality, or because of its good luck.  Most
often both are involved.  It would be terribly unfair to evaluate the quality
of the best model by testing it alone.  Any good luck that propelled it to the
top, commonly called selection bias, will be misinterpreted as intelligence.
This, of course, has been the downfall of many an aspiring market trader.
Fortunately, the Monte-Carlo randomization algorithm just described can
easily be modified to take selection bias into account.  This modified
algorithm computes the probability that the best model from among the
collection of candidates could have done as well as it did if all of the
candidates represent random pairings of positions with raw returns.  Note
that the null hypothesis tested is not that the best performer is worthless.
Rather, the null hypothesis is that all of the competitors are worthless.  In
practical applications this distinction is of little or no consequence.  But it is
a crucial theoretical distinction.
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The modification is effected by repeatedly permuting all of the
position vectors simultaneously, and for each permutation finding the
maximum total return from among the competing rules.  The collection of
these returns obtained from a large number of permutations defines the null
hypothesis distribution.

It is crucial that the competing models’ position vectors be permuted
simultaneously, rather than permuting each independently.  (Equivalently,
and perhaps more simply, the market return vector can be permuted.)  This
is because the competing rules may (and probably will) be correlated.  This
correlation structure must be maintained.  As an extreme example, suppose
that all of the competing models are identical; their position vectors are the
same.  They will all obviously have the same total return, so finding the
maximum return among them would be redundant.  This situation should
obviously reduce to the single-model problem already described.  If the
position vectors of the competing models were perturbed independently,
the resulting null distribution would be quite different from that obtained
by treating the problem as if it were a single model, which it really is.

Even though the best-of modification is mostly straightforward,
examination of the code clarifies any possible misunderstandings.  Here is
the routine:

double monte_best (
 int n , // Number of trading opportunities for each system
 int nbest , // Number of competing systems
 double *raw , // Raw return of each system; nbest sets of n
 int *pos , // Position of each; 1=long; -1=short; 0=neutral; nbest sets of n
 int normalize , // If nonzero, normalize positions for time neutral
 int nreps , // Number of replications, generally at least 1000
 double *nonpar , // If not NULL, only signs used for nonparametric test
 int *shuffle // Work vector n long holds shuffle indices
 )
{

int i, ibest, irep, k1, k2, count, nonpar_count, temp, *posptr, npos ;
 double cand_return, nonpar_cand_return, trial_return, shuffle_return ;
 double factor, prod, *rawptr ;

 factor = sqrt ( n ) ; // Produces sum when always in market

/*
 Compute the return of the candidate models and keep track of best
 If requested, do the same for the nonparametric version
*/

 posptr = pos ; // Points to first position of each candidate system
 rawptr = raw ; // Ditto for raw returns
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 for (ibest=0 ; ibest<nbest ; ibest++) {
 trial_return = 0.0 ; // Will sum total return
 npos = 0 ; // Will count times in market
 for (i=0 ; i<n ; i++) { // Cumulate return for candidate system 'ibest'
 if (posptr[i]) // If we are in the market at this time
 ++npos ; // Count time in market
 trial_return += posptr[i] * rawptr[i] ; // Sum total return
 }

if (normalize)
 trial_return *= factor / sqrt ( npos ) ;

 if ((ibest == 0)  ||  (trial_return > cand_return))
 cand_return = trial_return ; // Keep track of the best of the candidates
 posptr += n ;   // Advance to the next candidate system
 rawptr += n ;
 }

if (nonpar != NULL) { // Do the same using only signs if requested
 posptr = pos ; // Points to first position of each candidate system
 rawptr = raw ; // Ditto for raw returns
 for (ibest=0 ; ibest<nbest ; ibest++) {
 trial_return = 0.0 ;
 npos = 0 ;
 for (i=0 ; i<n ; i++) {
 if (posptr[i]) // If we are in the market at this time
 ++npos ; // Count time in market
 prod = posptr[i] * rawptr[i] ;
 if (prod > 0.0)
 trial_return += 1.0 ;
 else if (prod < 0.0)
 trial_return -= 1.0 ;
 }

if (normalize)
 trial_return *= factor / sqrt ( npos ) ;

 if ((ibest == 0)  ||  (trial_return > nonpar_cand_return))
 nonpar_cand_return = trial_return ; // Keep track of the best of the candidates
 posptr += n ; // Advance to the next candidate system
 rawptr += n ;
 }

}
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/*
 Do the Monte-Carlo replications
*/
 count = 0 ; // Counts how many at least as good as candidate
 nonpar_count = 0 ; // Ditto for ignoring signs (if requested)

 for (irep=0 ; irep<nreps ; irep++) {

 for (i=0 ; i<n ; i++)
 shuffle[i] = i ; // These will index the position vectors
 k1 = n ; // Shuffle the position indices
 while (k1 > 1) { // While at least 2 left to shuffle
 k2 = (int) (unifrand () * k1) ; // Pick an int from 0 through k1-1
 if (k2 >= k1) // Should never happen as long as unifrand()<1
 k2 = k1 - 1 ; // But this is cheap insurance against disaster
 temp = shuffle[--k1] ; // Count down k1 and swap k1, k2 entries
 shuffle[k1] = shuffle[k2] ;
 shuffle[k2] = temp ;
 } // Shuffling is complete when this loop exits

 posptr = pos ; // Points to first position of each candidate system
 rawptr = raw ; // Ditto for raw returns
 for (ibest=0 ; ibest<nbest ; ibest++) { // Find the best of the shuffled candidates

 trial_return = 0.0 ; // Will sum total return
 npos = 0 ; // Will count times in market
 for (i=0 ; i<n ; i++) { // Cumulate return for shuffled system
 if (posptr[shuffle[i]]) // If we are in the market at this time
 ++npos ; // Count time in market
 trial_return += posptr[shuffle[i]] * rawptr[i] ; // Sum total return
 }

if (normalize)
 trial_return *= factor / sqrt ( npos ) ;

 if ((ibest == 0)  ||  (trial_return > shuffle_return))
 shuffle_return = trial_return ; // Keep track of the best of the shuffled candidates

 posptr += n ; // Advance to the next candidate system
 rawptr += n ;
 }

if (shuffle_return >= cand_return) // If this random system beat candidate
 ++count ; // Count it
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 if (nonpar != NULL) { // Do the same using only signs if requested
 posptr = pos ; // Points to first position of each candidate system
 rawptr = raw ; // Ditto for raw returns
 for (ibest=0 ; ibest<nbest ; ibest++) { // Find the best of the shuffled candidates
 trial_return = 0.0 ;
 npos = 0 ;
 for (i=0 ; i<n ; i++) { // Compute return for this randomly shuffled system
 if (posptr[shuffle[i]]) // If we are in the market at this time
 ++npos ; // Count time in market
 prod = posptr[shuffle[i]] * rawptr[i] ;

 if (prod > 0.0)
 trial_return += 1.0 ;
 else if (prod < 0.0)
 trial_return -= 1.0 ;
 }

if (normalize)
 trial_return *= factor / sqrt ( npos ) ;
 if ((ibest == 0)  ||  (trial_return > shuffle_return))
 shuffle_return = trial_return ; // Keep track of the best of the shuffled candidates
 posptr += n ; // Advance to the next candidate system
 rawptr += n ;
 }

if (shuffle_return >= nonpar_cand_return) // If this random system beat candidate
 ++nonpar_count ; // Count it
 } // If doing nonpar
 } // For all reps

 if (nonpar != NULL)
 *nonpar = (double) nonpar_count / (double) nreps ;

 return (double) count / (double) nreps ;
}

Most of the operations in the subroutine were explained earlier for
the single-candidate version, so they will be ignored here.  One difference
involves the data structure for the positions and raw returns.  Each of these
vectors contains nbest*n elements.  The first n elements are the
positions/raw returns for the first of the nbest candidates.  The next n
elements are for the second candidate model, et cetera.  The pointers posptr
and rawptr walk through the candidates.  For each value of ibest, these two
variables will point to the first element of the corresponding candidate
model.

The easiest way to simultaneously shuffle all position vectors is to
create an index vector shuffle that contains the integers zero through n–1
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and randomly shuffle this vector.  By using the indices in this vector to pair
positions with raw returns, all positions are shuffled identically.

Astute readers might be wondering why this subroutine employs a
separate raw return vector for each candidate model.  It would seem that
competing models would be differentiated only by their position vectors.
They would all have the same raw return for each trade opportunity.  The
answer is that this is a general implementation that actually allows
competing models to trade different markets if desired.  For example, an
aspiring trader might not be sure if he wants to trade pork bellies or crude
oil.  He’s willing to be flexible and pick whichever provides the best
historical returns.  So he may try 20 candidate models to trade pork bellies
and 15 candidates for crude oil, giving a total of 35 candidates.  As long as
the raw returns for both markets are commensurate (such as percent returns
having about the same variance) and the trading opportunities are parallel
(such as daylong exposure) it would be legitimate to mix markets this way.
Readers who want to simplify the code to use a single return vector to trade
a single market can easily modify the algorithm.

The algorithm includes optional normalization for the amount of
time each candidate spends in the market.  Motivation for why this is useful
is presented on Page 35.  Here we discuss how it is done and what some its
implications might be.

Normalization is appropriate only if the candidate rules spend
significantly different times in the market.  In other words, if the number of
zeros in the position vector is about the same for all candidates, there is no
need to normalize.  The effect of normalization is to increase the relative
impact of candidates that spend less time in the market.  When finding the
best performer, instead of comparing their total returns, we compare the
scaled returns.

Some might argue that this results in comparing apples to oranges,
for instead of judging systems by their total or mean return, we are
comparing differently scaled returns.  But this is not really a problem.  It is
more like comparing Red Delicious apples to Yellow Delicious apples.  This
scaling simply amounts to trading a larger number of contracts for thinly
traded systems, an eminently justifiable action.

The scaling factor is the square root of the number of trading
opportunities in which the rule is in the market.  A rule that is always in the
market will not be rescaled.  Its score will be its total return.  A rule that is
in the market only one-quarter of the time will have its total return doubled.

This factor is chosen because it has the effect of equalizing the
variance of the rules, the virtue of which is discussed on Page 35.  In
practical terms, this means that the rules would all have about the same
volatility.  It seems natural to compare the total returns of rules that have
roughly equal volatility.  Readers familiar with linear algebra will also see
a nice geometric interpretation of the scaling.  The Euclidean lengths of the
position vectors are made equal, so when the dot products of the positions
with the raw returns are formed, equally scaled projections result.
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Serial Correlation, Again

If this algorithm is applied to a market having significant serial
correlation in both the raw returns and the position vectors, there will be a
strong anti-conservative bias in the results, far more than was seen in the
single-candidate case.  Rules that are random except for their serial
correlation will reject the null hypothesis much more often than expected.
This issue was already discussed on Page 7, but it is so important, especially
in a best-of scenario, that it bears repeating.  With serial correlation in the
market and positions, wins and losses will both be exaggerated compared
to the fully random case because sometimes position clumps will be aligned
advantageously, and sometimes disadvantageously, with periods of
unusually large or small raw returns.  In other words, candidate systems
will tend to be either strong winners or strong losers, with middling
performers de-emphasized.  Looked at another way, if you want a winning
system in a serially correlated market, you would be well advised to employ
systems with serially correlated positions.  That’s where the best winners
reside (along with the worst losers!).

This is why when both the raw returns and the positions of
candidate systems are serially correlated, the best from among a collection
of candidates will tend to appear with a frequency exceeding the computed
significance level in a Monte-Carlo permutation test.  This test is computing
the probability in a universe in which all pairings are equally likely, not a
universe in which correlated pairings are more likely than uncorrelated
pairings.  If numerous candidates are compared, it is quite likely that at
least one of them will get lucky and obtain one or more favorable
alignments of correlated positions with correlated raw returns.

So we are left with a vital philosophic question: Is this good, or is it
bad?  It is bad in the sense that the supposedly good candidates actually
chose their position based on the alignment of celestial bodies, not an
effective prediction model.  With this in mind, we should not be happy that
candidates are being rated as good more often than we should expect.  On
the other hand, serially correlated candidates apparently were deliberately
designed to clump their positions.  This is precisely what we want in an
environment of serially correlated raw returns. So in a very real sense, the
candidates are showing some intelligence, at least as far as the historical
sample goes, and the Monte-Carlo test is discovering this intelligence.
Naturally, if the best model truly is random other than being serially
dependent, this randomness cannot be expected to continue to align well
with market positions.  Just as in this particular historical sample it
performed unusually well, at some time in the future it will perform
unusually badly.  But the point is that if the best model chose serially correlated
positions on its own, not as a result of forces imposed by the designer, chances are
good that they resulted from the serial correlation in the market, and hence
are intelligent.  Of course, if the serial correlation in positions was mostly
imposed by design, and the market has strong serial correlation, this
argument goes out the window, and best-of selection will have a very
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strong tendency to pick a lucky worthless model.  These are the facts.  Form
your own opinion relative to your application.

Last, recall that on Page 6 it was pointed out that by centering the
raw market returns, we could avoid confounding true predictive quality
with prejudice induced by the interaction of market bias with long/short
bias.  The point was made that such centering is not needed for the Monte-
Carlo permutation test because it happens implicitly, but that it had such
general utility for other tests that it should perhaps be done habitually.
When using Monte-Carlo permutation to test the best of many models,
centering does have an impact, and it almost certainly should be used.

The impact occurs in the generation of the null hypothesis return
distribution.  When the best randomized model is chosen for each iteration,
models whose long/short imbalance matches market bias will be favored.
The result is that the null distribution is shifted to the right, making the test
more conservative.  It may be that such favoritism is desired.  But it is my
opinion that centering the raw market returns is a good practice for Monte-
Carlo permutation tests of multiple models, especially when there is strong
market bias and a variety of long/short ratios among the competing models.

Permutation Tests During Training

There are many common applications in which the Monte-Carlo
permutation test may be used in a best-of-multiple-models situation.
Among these (though certainly not limited to these) are the following:

1. The developer may hypothesize a number of models, perhaps
intelligently or perhaps by throwing spaghetti against the wall.  For
example, Model 1 may buy when the market rises ten percent on
increasing volume.  Model 2 may be the same except requiring a five
percent rise.  Model 3 may ignore volume, and so forth.  Each of these
competing models is tested on a dataset and the best is chosen for
actual trading.  We wish to compute the probability that a model this
good could have arisen from pure luck.

2. We may hypothesize a model but suspect that it performs differently
in different markets.  Thus, we want to test it in a variety of markets,
with the intention of trading only the best market.  

3. We may design several complex models that require parameter
optimization.  For example, we may have a moving-average-crossover
model that trades only on increasing volume, and another that trades
only on decreasing volume, and a third that ignores volume.  We need
to optimize the MA lengths, as well as a possible volume threshold.
After training these competing models on a dataset, they are all tested
on virgin data, and the best out-of-sample performer is selected for
subsequent trading.
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There is, however, an application for which the Monte-Carlo
permutation test described earlier is usually not appropriate, although there
are several modifications that can enable its use.  Most training algorithms
test the performance obtained from a large collection of trial parameter
values and ultimately choose the parameters that provide the maximum
performance.  It is often not legitimate to treat the position vectors
corresponding to the trial parameters as competitors and apply the
preceding algorithm to compute a probability for the final best performers.

There is one situation in which this is permissible.  If we are just doing
a random or grid search of trial values, there is no problem.  For example,
suppose we are optimizing two parameters.  We may define ten trial values
for each of them and then test the 100 possibilities, choosing the best.  There
is no problem here.  Or we may randomly generate trial parameter values
and choose the best performer.  Again, no problem.

The problem arises when some of the supposed competitors are chosen
in a way that is dependent on the performance of other competitors, a
practice that leaks knowledge of the market into the new competing
model’s design.  This would be true for hill-climbing algorithms, genetic
optimization, and so forth.  We now explore the source of this problem.

Suppose we have three designers of trading systems: John, Mark, and
Mary.  They are asked by their employer to each think up a good trading
algorithm.  He will then give each of them the same dataset and ask them
to test their system.  The employer will choose the system that performed
the best.  A straightforward application of the Monte-Carlo permutation test
will tell him the probability that the best performer’s results could have
arisen from luck.

However, suppose John decides to cheat.  He spies on his two
competitors and waits until they have backtested their systems.  After
surreptitiously examining their results, he tweaks his own idea so that it is
similar to that of whichever competitor had the better results, hoping that
the melding of his idea with an idea that he now knows to be good will
result in a superior system.

Consider how a straightforward application of the permutation test will
generate the supposed null distribution.  The position vectors of the three
competitors will be frozen, which is necessary for capturing any correlation
structure in their methods.  The market returns will be permuted several
thousand times.  For each permutation, the returns of the three competitors
will be computed and the maximum found.  This set of maximum values
defines the null distribution.

Unfortunately, a great many of these values will be illegal because they
could not have happened in real life.  When the true test is done, John will
look at the returns for Mark and Mary, and design his system in accordance
with the winner.  Suppose Mary wins.  Then John’s system will resemble
Mary’s.  But when the permutations are done, many of them will result in
Mark beating Mary.  In these cases, if we are to generate the null
distribution in accord with real life, John’s positions should resemble
Mark’s, not Mary’s.  But John and Mary are locked together for the test.
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Recall that the fundamental assumption of the permutation test is that all
possible permutations must be equally likely in real life.  In this case, many
of the permutations could never happen in real life!  This is a deadly
violation of the assumption.

One moral of the story is that generation of the null distribution must
be in accord with real life.  If John cheats by looking at Mary and Mark’s
results, then the null distribution process must do the same.  For each
permutation, it should first compute the returns for Mark and Mary, then
generate John’s system according to whatever rules he applied in real life.
Obviously, this would be an impossible task in any but the most trivial
situations.  We need a different approach.

Before proceeding, it is useful to examine the problem from a different
angle.  Recall that the null hypothesis for the test is that all of the models are
worthless.  But in the cheating example just given, this can never be the
case.  Suppose Mark and Mary both have truly worthless systems.  In other
words, their expectation over the theoretical population of all possible
datasets is no better than a random system.  Since John designs his system
to resemble the better of them, his expectation will be better than a random
system.  In other words, the null hypothesis will always be violated in this
situation!

It should be clear then, that this problem is not unique to the
permutation test.  It also applies to the bootstrap test described in the next
section, as well as any other best-of test that I can imagine.

So, what do we do if we want to use a Monte-Carlo permutation test on
the results of a training run?  There are several possibilities.  We’ll explore
a few of them.

The simplest, though often impractical method involves slightly
changing the null hypothesis.  First, difference the series.  Do each of the
several thousand permutations on the differences, and them sum the
differences to produce a new series whose basic statistical properties should
be similar to those of the original series.  For each of these series, apply the
training algorithm and record the performance of the trained model.  This
set of performances defines the null distribution against which the actual
performance is compared.  In this case, we are testing the null hypothesis
that the sequence of daily changes provides no predictive information that
the model can usefully detect.  In many cases this is a perfectly reasonable
null hypothesis.

This method often has a serious practical drawback.  The training
algorithm must be run several thousand times.  If a training run requires
considerable time, repeating it this many times may be impractical.

A closely related and often superior method may be used, especially if
the application involves laborious precomputation of a set of predictor
variables.  This will often be the case  if we are computing a vast number of
candidate predictors and using a selection procedure to choose a small
subset of them for use by the model.  In this case, we compute all predictors
and market returns and arrange the data in a matrix.  Each row of the
matrix corresponds to a single observation period.  The columns are the
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predictors, except for the last column, which is the market return.  Then you
would keep the predictors fixed and permute the column of market returns
several thousand times.  For each permutation, run the training algorithm.
This tests the null hypothesis that the model is unable to find any useful
predictive information in the predictors.

The principal advantage of this method over permuting differences is
that the predictors remain fixed.  In many cases this is a more realistic
approach than generating a new set of predictors for each permutation.
Unfortunately, this method also suffers from the problem of requiring
several thousand runs of the training algorithm.

My own favorite permutation test when training a complex model on
a single dataset is to use either walkforward testing or cross validation to
generate a set of out-of-sample positions, and then apply the ordinary
permutation test to these results.  In other words, hold out a small block of
data and train the model on the remainder of the dataset.  Apply the trained
model to the hold-out set and record the position vector.  Then replace the
hold-out set and remove a different block.  Repeat this test until all cases
have been held out exactly once.  (This is cross validation, my preference.
You may wish to walk forward instead.)  After the complete set of positions
is found, apply the single-sample permutation test in order to compute a
probability value for the return.  This method requires that the training
procedure be run only once for each hold-out block.  Of course, if you are
simultaneously training several competing models or applying a model to
several markets, you will need to use the best-of version of the test.

Astute readers may notice that this method is not actually testing a
single model, a model produced by a training algorithm or model
generator.  Rather, it is simultaneously testing a group of models, almost
certainly a different model for each of the dataset splits.  So what are we
really testing?  We are testing the model generator itself, whether it be
something as simple as optimizing parameters in a fixed design, or
something as complex as an evolutionary algorithm that builds a model.  If
we find that the statistical significance of the complete out-of-sample set is
good, we can be confident that the procedure we used to generate the
individual models is effective.  Thus, when we conclude the operation by
using our model factory on the entire dataset, we can be confident that the
model it produces will be effective.  There is usually no way to test the
efficacy of this final model unless we can procure a virgin dataset.  But at
least we can trust the model if we believe that the procedure that produced
it is trustworthy.

In summary, the null hypothesis of the multiple-model permutation
test is that all competing models are worthless in the sense that their returns
are no better than what could be obtained by random guessing.  But when
some of the competitors are designed based on leaked information about
the market returns, which happens when the design of the models depends
on the performance of other competitors, the null hypothesis is violated,
rendering the test useless.  The test must be redesigned in such a way that
no market information goes into the design of any of the competitors.
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Bootstrapping the Best of Many Models

Just as was the case for Monte-Carlo randomization, there is a simple
extension of the bootstrap to handle the case of many competing models.
We begin by reviewing the single-model case.  Let 2 be the unknown true
mean return of the single candidate system.  Our null hypothesis is that 2=0;
the system is worthless.  The observed return of the candidate system is 2^,
and we wish to know whether it is so large as to be unlikely when the null
hypothesis is true.  The observed return is subject to random sampling
error, 2^–2. If we knew the true distribution of this quantity, we could
compute the area of its tail to the right of the observed 2^ in order to find the
basic-method probability of having obtained a return this good when the
true mean return is zero.  Naturally we do not know this distribution.  But
we can estimate it by drawing a large number of bootstrap samples from the
original set of trade results and computing the mean 2^i of each bootstrap
sample.  The distribution of 2^i–2^ should resemble the distribution of the
error, 2^–2. (We hope!)

Now suppose that instead of having just one candidate system, we
have K of them in competition.  Let the mean return of system k be 2^k. In
order for the algorithm to be valid, each of these competing systems must
have the same number of individual returns, and the returns must be
parallel in time.  In other words, the first individual return in all of the
systems must refer to the same time period, as must the second, et cetera.
This is easily satisfied if, for example, the individual returns are daily.  It is
perfectly legitimate to insert a few returns of zero if this is needed to
achieve parallel structure, although too many zeros can distort the test.

In order to preserve any correlation among the systems, each bootstrap
sample must encompass each competing system identically.  So, for
example, in a particular bootstrap sample we might ignore the first and
second returns in each system, include the third return four times for all
systems, et cetera.

In the single-system case we computed the bootstrap distribution of
2^i–2^. In the best-of case we compute 2^k

i–2^k separately for each system and
find the maximum of these quantities across all K systems.  The distribution
of this maximum is the null hypothesis distribution.  The area in its tail to
the right of the best observed mean return is the basic-method probability
of having obtained a best mean return this good or better from a set of
candidate rules all of which are worthless.

Remember that Monte-Carlo randomization and the bootstrap are
actually testing different null hypotheses, although in practice the
hypotheses will usually be similar.  The Monte-Carlo method tests the null
hypothesis that the pairing of long/short/neutral positions with raw returns
is random as opposed to intelligent.  The bootstrap tests the null hypothesis
that the true (expected in the future) returns of the candidate systems are
zero.  In most cases the difference is more theoretical than practical, but it
should be kept in mind.
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The advantages and disadvantages of the bootstrap approach to best-of
evaluation compared to Monte-Carlo randomization are similar to those in
the single-system case.  The big advantage of the bootstrap method is that
it requires knowledge of obtained returns only for periods in which trades
actually took place.  Monte-Carlo randomization requires the additional
knowledge of the raw market returns and positions for all trading
opportunities, ideally including even those in which no trade took place.
This information concerning positions and hypothetical returns for trades
that never happened may not be available in all trading scenarios, leaving
the bootstrap as the only alternative.

The main problem with the bootstrap is its critical assumption that the
distribution of 2^i–2^ is an effective proxy for the distribution of the sampling
error, 2^–2. As is well known, this is an often dubious assumption.  Worse,
the best-of modification of the bootstrap does not support any apparent way
that I can see of using the generally superior percentile or BCa methods of
hypothesis testing.  The basic method seems to be the only choice.
Nonetheless, the bootstrap does have some strong asymptotic convergence
properties, and it is almost always easier to apply than Monte-Carlo
randomization due to the fact that it has no need of positions or
hypothetical returns.  For an extremely detailed examination of the
bootstrap algorithm just described, including asymptotic convergence
theorems and extensions to other performance measures, see Halbert
White’s assorted papers on the subject, most of which are readily available
on the Internet.

As a final note, readers should be warned that this algorithm has been
patented by Dr. Halbert White, who also sells a software implementation
under the trademarked name Reality Check.  Experimenters who wish to
use this bootstrap test for evaluating the best of competing models should
contact Dr. White about obtaining a license or purchasing his software.

Spoiler Models

When testing one model for quality, the official null hypothesis is that the
model is worthless or worse, and the alternative is that the model has
predictive ability.  In the case of the Monte-Carlo permutation test,
worthless means that the pairings of positions with raw market returns is
random, and for the bootstrap worthless means that the expected mean
return is zero.  There is the possibility that a model is actually worse than
worthless.  The pairings that it produces may, on average, be nonrandom
in a way that is inferior to truly random pairings.  The expected mean
return may be negative.  Still, we treat the null hypothesis as if it is random.
We are justified in doing this because randomness is the least favorable
hypothesis. It should be obvious that when we compute the probability of
an observed good model having attained its level of performance by pure
luck under a hypothesis of randomness, the probability of such
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performance under a worse hypothesis will be even less than the computed
value.  This allows us to keep the null hypothesis simple.

But when we are testing the best performer from among a set of
competitors, the situation is not so clear.  It is certainly reasonable to assume
a null hypothesis that all competitors are random.  To do otherwise would
force us to confront an infinitude of null hypotheses, and with them an
infinitude of null distributions.  But are we on solid ground in doing so?
Actually, the ground here is a bit mushy.  This section will explore the
situation on a heuristic level.  Strict mathematical rigor is beyond the scope
of this text.

Before getting into the discussion, one other situation must be
mentioned.  The null hypothesis says nothing about the variance of the rule
returns.  Neither Monte-Carlo permutation nor the bootstrap of the best
requires that all competitors have equal variance.  Nonetheless, it is good
to at least roughly equalize their variances.  If different markets are used for
different rules, the raw market returns should have nearly equal variance.
If different rules spend different amounts of time in the market, it is best to
normalize their returns according to the square root of their summed
absolute positions, as discussed with the code earlier.

The reason is that we usually do not want high-variance rules to
dominate the test.  It is not illegal for this to happen.  But it is almost never
good.  Suppose one competitor has a variance that is much greater than its
peers.  When the null hypothesis is generated, either by Monte-Carlo
permutation or by bootstrapping, the right tail, which is the one that
interests us, will be defined almost entirely by the high-variance model.
Any best return that is exceptionally large can only come from this model.
So in a sense, we might as well not bother with the other models.  Even
moderately good models, if they have relatively low variance, will never be
able to land far enough in the right tail to be significant.  Models that have
high variance will dominate the competition, while models that have unusually low
variance will be largely ignored.

What happens when all of the competitors have roughly equal
variance, but one of them is so bad that on average it actually performs
worse than a random model?  This causes an unavoidable problem.
Understand that rejection of the null hypothesis does not always happen
due to outstanding performance of the best model.  It will often be the case
that the best model is not so great that it clearly stands out.  Sometimes a
model that is not really the best will get lucky and not only beat the best,
but also lead to rejection of the null hypothesis.  At first glance this may
seem to be undesirable.  And in a way it is, because it means that the
observed best model is not always the truly best model.  Nonetheless, this
occasional usurpation is vital to correct execution of the test.  If it did not
happen, the test would be excessively conservative.  In order for the
presence of unlucky good models to influence rejection of the null
hypothesis, we need some other models to sometimes get lucky.

This necessary condition is subverted when one or more competitors
are worse than random.  Such models will find it difficult or impossible to
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get lucky enough to lead to rejection of the null hypothesis enough times to
compensate for the times that a truly good model is unlucky.  The test will
be overly conservative.

Think of it this way.  Suppose we have ten competing models, and our
null hypothesis is that they are all random.  Also suppose that unknown to
us, one of these ten models is actually so much worse than random that it
has no chance of ever being the best.  In real life, we will be testing the best
of a set of nine competitors, while the generated null distribution will be
that of ten competitors.  The best of ten models will be, on average, better
than the best of just nine models.  Thus, if one model is very bad, a truly
good model will need to be better than if the other competitors were truly
random, in order to make up for that one bad model that will never be
lucky enough to reject the null hypothesis.  If the competitors include one or
more models that are worse than random, the test will be conservative.

Note that this does not mean that we should eliminate any models that
show poor performance.  An observed bad performer is different from a
truly bad performer.  If we were to simply go through the competitors and
remove any that had a negative return, we would distort the test.  Any
model that was tested must be included.  An observed poor performance
may be due to an inherent flaw in the model, or it may be due to bad luck.
We have no way of knowing.  What we can do, though, is try to avoid even
testing models that we have reason to believe may be bad.  Sometimes this
is possible, and sometimes it is not.  This is yet another argument against
wildly throwing spaghetti against the wall, to see what sticks.

A potentially disastrous situation is obtained when a rule has both poor
average performance and unusually high variance.  Look at Figure 3.  The
solid-line bell curve shows the assumed distribution of a set of competitors
having random returns and equal variance.  The dotted line shows the
distribution of the best of these competitors.  It is shifted to the right, as
expected.  The dashed line shows the distribution of a model that has a very
negative expected value and a high variance.  Observe that in real life this
model will dominate the right tail of the distribution of the best performer.
In other words, any observed best model whose performance is good
enough to reject the null hypothesis will be virtually guaranteed to be a
lucky instance of this spoiler model.  A truly good model will have to be
extremely, perhaps unrealistically good in order to outperform a lucky
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Figure 3  Trouble from a spoiler model.

spoiler.  This is bad.
The Monte-Carlo permutation test generally handles this situation well.

As long as the raw returns have similar variances and the returns are
normalized according to the amount of time spent in the market, as already
discussed, such high-variance domination will not occur.  Thus, the test will
experience the same conservative behavior that we saw in conjunction with
a poor model having the same variance as its competitors.  This is annoying,
but almost never serious.

The bootstrap of the best model is another story.  Recall that the
observed mean return of each model is subtracted from the bootstrap
sample mean in order to find the distribution of the departures from the
mean.  This means that the assumption of zero mean for all models is
unavoidably implicit in the test.  A bad high-variance model will dominate
the right tail.  In the extreme case of a very negative expected mean and a
very large variance, the power of the bootstrap test will be reduced to
essentially zero.  The presence of even one such serious spoiler among the
competitors will mean that it will be nearly impossible to reject the null
hypothesis, even when one or more quite good models are included.

I am not aware of any general method for modifying the bootstrap test
to deal with this problem, although position scaling similar to that
recommended for the Monte-Carlo test will solve the problem when it is
feasible.  The moral of the story is that if you plan to bootstrap the best of
several models, you must do your best to make sure that either all
competitors have similar variance, or that no truly terrible models are
included in the competition.  The combination of the two can render the
bootstrap worthless.

The good news is that the spoiler problem is rare nearly to the point of
being non-existent in real-life market applications.  I’ve worked with a wide
variety of models in numerous commodity markets, and I’ve never seen a
situation in which a serious spoiler model appears.  If the competing models
are all trading the same market, or if the different markets have their
variances equalized, and if the competing systems are in the market for
even roughly the same amounts of time, the variance of the competing
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returns will not come close to being disparate enough to cause spoiler
problems.  And trading systems that are significantly worse than random
are difficult to find.  In fact, if one were to be lucky enough to locate such a
system, one could simply go long when it says to go short, and conversely,
and rapidly become wealthy!  The bottom line is that the spoiler problem
is far more theoretical than practical, and hence multiple-model
bootstrapping is almost always safe from its deleterious effects.

Permuting Thresholded Results

A common practice is to develop a trading model that makes numeric
predictions (as opposed to simple class decisions like long/short/neutral).
We then base each trade decision on the size of the prediction relative to a
specified threshold.  For example, we may train a model to predict the
number of points that the market will move in the next day.  After running
the model on a batch of historical data, we may observe that the prediction
exceeds, say, 3.7 points approximately ten percent of the time, and this
upper decile provides many good trades.  (Intelligently choosing the
threshold is another story for another day.  For now, assume that we have
done so in a decent manner.)  We may then decide that in the future, we
will take a position if and only if the prediction is 3.7 or greater.  With this
in mind, we procure an independent historical dataset and test this rule.  If
the obtained total return is nicely positive, we rejoice in our brilliance.

But could the obtained return have arisen from nothing more than
dumb luck?  A Monte-Carlo permutation test can provide useful
information to help answer this question.  On the surface, this test seems to
be quite different from the test described earlier.  In fact, though, it is a
simple specialization of the same test.

The test is performed by arranging the n actual returns in an array, and
counting the number of them, k, whose predictions equal or exceed the pre-
specified threshold.  These k returns represent the trades that were taken.
Use these k returns to compute a test statistic.  This may be a mean return,
total return, Sharpe ratio, profit factor, or any other performance measure
that does not depend on order.  (Actually, in most cases, even order-based
measures such as the return-to-drawdown ratio can be used, although they
tend to be too unstable for my taste.)
After computing the return, shuffle the array, choose the first k returns in
the shuffled array, and compute the test statistic based on these k values.
Repeat this a large number of times, perhaps 1000 to 10000 times.  Count the
fraction of these times that the test statistic from the shuffled data equaled
or exceeded that from the original, unshuffled data.  This is a good
approximation of the probability that a truly worthless model could have
performed as well as it did purely by luck.  Unless this probability is small,
be worried.
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Note that this test is very easy to program and fast to execute.  Yet it is
enormously informative.  For these reasons, any program that tests
thresholded models should routinely include this algorithm and report its
results to the user.

Summary

Monte-Carlo permutation tests have been around for several decades at
least, and primitive forms existed even before high-speed computers
became widely available.  The reason is simple: They are generally easy to
implement, they have fewer critical assumptions than most statistical tests,
and in most cases they are fast to compute.

The fundamental basis of a Monte-Carlo permutation test is that if,
under the null hypothesis, all possible permutations are equally likely, then
we can generate the null-hypothesis distribution of our test statistic by
randomly sampling a large number of permutations.  Once we have this
null distribution in hand, it is trivial to compute the fraction of its area that
is at or beyond our observed value of the test statistic.  And behold, we thus
have the probability that our presumably great results could have been
obtained by nothing more than good luck.

Of course, the assumption that all permutations are equally likely is
critical to the validity of the test.  As we saw in earlier discussions, certain
designs of the trading system can violate this assumption, making the
permutation test suspect, usually anti-conservative.

But don’t despair.  Apparent violations are often benign.  For example,
suppose we track performance daily.  Also suppose that the rules that
govern the trading system implicitly or explicitly demand that long
positions stay open for exactly five consecutive days, and short systems stay
open for ten consecutive days.  At first glance it would appear that
permuting the position vector would horribly violate this rule, meaning that
most of the random perturbations could never happen in real life.  But
remember that we are only concerned with the pairing of positions with raw
market returns.  Exactly the same test would be obtained by permuting the
returns, leaving the positions unchanged, in full compliance with the
trading rule.  If we are willing to assume that the raw market returns have
little or no serial correlation, permuting them would be reasonable, and
hence the test would be valid.  Even if they do have noticeable serial
correlation, the demonstration of Figure 2 on Page 9 shows that the impact
of this violation is tolerable.

The obvious lesson here is that if we are dealing with a highly
correlated market, we should, to the greatest degree possible, avoid
designing trading systems whose position decisions are inherently
correlated.  Of course, the appearance of serially correlated positions does
not automatically indict the system or statistical analysis of its results.  If the
system on its own comes up with strings of long or short positions, this is
fine.  Problems arise only when the system designer incorporates rules that
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produce serially correlated positions regardless of the behavior of the market.
Following this guidance does not just make statistical tests of results more
reliable.  It has other, more practical effects that are beyond the scope of this
document.

Finally, note that the potential problems with violations of the
fundamental assumption are not weaknesses specific to Monte-Carlo
permutation tests.  If you look back at Figure 2, you will see that the two
bootstrap tests were impacted even more severely than the permutation
test.  And parametric tests like the venerable t-test would have fared every
bit as badly.  This is because parametric and bootstrap tests absolutely
require that the observations be independent.  If the market and the
position vectors both suffer serial correlation, individual returns will also be
correlated.  This is devastating to the tests.  (There are dependent bootstrap
tests that circumvent this problem, though at a considerable cost in power.
My experience is that they are rarely worthwhile.)  The truth is that Monte-
Carlo permutation tests tend to be more robust than most other tests.  This
is good.


